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Abstract - This paper is devoted to the structural unification 

of Logic Objects. The basic idea of the OO-Prolog language 

is the definition of a model in which objects are constructed 

by unification and undone by backtracking. In OO- Prolog, 

the resolution is based on a logical deduction of all 

consequences of the knowledge base via unification. In 

contrast, Prolog's unification mechanism is limited to 

syntactic processing and cannot consider the OO-Prolog 

language's objects. For the object layer of OO-Prolog to 

react homogeneously with the rest of the Prolog language, it 

is necessary to have a unification mechanism that considers 

Logic Objects. In this study, we propose building a 

unification scheme that considers the semantics of objects. 

This provides the user with a tool for comparing objects 

(from a structural point of view) and sharing data between 

objects. The algorithm we propose is limited to the case 

where the two objects to be unified belong to the same class. 

However, extensions of the algorithm to more general cases 

are proposed. 
 

Keywords - Logic programming, Prolog, OO-Prolog, object 

programming, logic objects, unification, structural 

unification of logic objects. 

I. INTRODUCTION 

Logic programming was developed in the early 1970s to 

extend earlier work on the automatic translation of theorems 

and artificial intelligence. Since logic sought to model human 

reasoning, it was hoped to simulate it on a computer. 

Building on the work done by Herbrand in 1930 [Herbrand 

67], Prawitz [Prawitz 60], Gilmore [Gilmore 60a] [Gilmore 

60b], Martin Davis and Hilary Putnam [Davis 60] and others, 

worked extensively on automatic theorem proving in the 

early 1960s. This effort culminated in 1965 with the central 

paper by Robinson [Robinson 65], which introduced the 

resolution rule. Solving is an inference rule that is 

particularly well suited to automation on a computer [Lloyd 

87] [Lloyd 88].The credit for the introduction of logic 

programming goes mainly to Kowalski [Kowalski 70] 

[Kowalski 71] [Kowalski 74a] [Kowalski 74b] and 

Colmerauer [Colmerauer 72] [Colmerauer 73] [Colmerauer 

75] [Colmerauer 92] [Colmerauer 93] even though others 

should be mentioned in this regard: Roussel [Roussel 72] 

[Roussel 75], Pasero Robert [Pasero 73], Jean Trudel 

[Colmerauer 71], Henry Kanoui [Kanoui 73], Battani 

[Battani 73], Green [Green 69], Hayes [Hayes 73], etc.  In 

72, Kowalski and Colmerauer came up with the fundamental 

idea that logic could be used as a programming language.The 

acronym Prolog (PROgramming in LOGic) was invented and 

the first Prolog interpreter [Colmerauer 73] [Colmerauer 75] 

was implemented in ALGOL-W by Roussel [Roussel 72] 

[Roussel 75] [Colmerauer 92] [Colmerauer 93], in Marseille 

(France) in 72.  
 

Prolog (PROgramming in LOGic) was thus born out of 

the need to be able to process natural language by computer 

and, in particular, grammar [Colmerauer 73] [Colmerauer 

75] [Colmerauer 82] [Colmerauer 89] [Colmerauer 92] 

[Colmerauer 93] [Clocksin-03][Cohen 88]. Since then, we 

can count many other application areas: Relational databases, 

Logic (and mathematics), Abstract problem solving, Natural 

language processing, Symbolic equation solving, Artificial 

intelligence, etc. Various implementations are available: 

Standard ISO, SWI-Prolog (Dept. of Social Science 

Informatics, www.swi-prolog.org), Prolog III (PrologIA), 

SICStusProlog (www.sics.se/sicstus), Open Prolog 

(www.cs.tcd. i.e./open-prolog), GNU Prolog, AllegroProlog, 

BProlog, Visual Prolog (Prolog Development Center A/S), 

YAP-Prolog, LPA-PROLOG, PoplogProlog, Turbo Prolog 

(Borland), IF-Prolog (Siemens Nixdorf), DelphiaProlog 

(Siglos), BIM Prolog (Integral Solutions Limited), Win-

Prolog (Logic Programming Associates), PDC Prolog 

(Prolog Development Center), Quintus Prolog (AI 

International Limited), etc. (Comparison of Prolog 

implementations: 

https://en.wikipedia.org/wiki/Comparison_of_Prolog_imple

mentations).   
 

Hewitt's PLANNER system [Hewitt. 69] [Hewitt 70] 

[Hewitt 72] [Hewitt. 09] can be seen as a predecessor of 

Prolog. The idea that first-order logic or at least some of its 

substantial subsets could be used as a programming language 

was revolutionary at the time because, until 72, logic had 

only ever been used as a declarative or specification 

language in computer science [Lloyd 88]. The birth of logic 

programming meant the advent of specifications that 

computers could directly execute. However, Kowalski shows 

us in [Kowalski 74a] [Kowalski 74b] that logic has a 

procedural interpretation, which makes it very effective as a 

programming language.  

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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One of the main ideas of logic programming, due to 

Kowalski [Kowalski 70] [Kowalski 71] [Kowalski 79a] 

[Kowalski 79b] [Kowalski 88], is that an algorithm is made 

up of two disjoint components, logic and control. The logic 

formulates the problem to be solved while the control 

formulates how to solve it [Kowalski 79a] [Kowalski 79b] 

[Kowalski 88] [Lloyd 87] [Lloyd 88]. In general, a logic 

programming system should provide the programmer with 

the means to specify these components. However, separating 

these two components has a number of advantages, not least 

of which is the ability for the programmer to specify only the 

logic component of an algorithm and leave control solely to 

the logic programming system itself [Lloyd 88]. In other 

words, an ideal logic programming system is purely 

declarative logic programming. Unfortunately, current logic 

programming systems have not yet achieved this. 

 

In the object-oriented programming approach, there are 

several reasons to extend the syntactic unification of Prolog 

to the structural unification of objects. 

 

A. Structural comparison of objects 

Consider the following two objects : 

 id1 -> [class: car, name: 'R4', brand: 'Renault', year: 

1978] 

 id2 -> [class: car, name: 'R4', brand: 'Renault', year: 

1978] 

For the system, there are two very distinct objects. On 

the other hand, their values are equal and we can say that 

these two objects are semantically unifiable (equal value in 

the terminology of object-oriented databases [Delobel 91]). 

In the following case : 

 id1 -> [class: car, name: 'R4', brand: 'Renault', year: 

1978, chassis: id3] 

 id2 -> [class: car, name: 'R4', brand: 'Renault', year: 

1978, chassis: id4] 

whereid3 and id4 are object identifiers, with : 

 id3 -> [class: chassis, type: 'XF330', weight: 200] 

 id4 -> [class: chassis, type: 'XF330', weight: 200] 

Although the identifiers id3 and id4 are not equal, they 

denote two semantically equal objects. Therefore, and by 

recursion, id1 and id2 are also semantically equal or "deep 

equal" in the terminology of some systems, for example, the 

Eiffel system. This equality means that the values may differ, 

but when we expand them by replacing the identifiers with 

the values of the objects they represent, we find two objects 

with the same structure. Everything happens as if we had : 

 id1 -> [class: car, name: 'R4', brand: 'Renault', year: 

1978, chassis: id3] 

 id2 -> [class: car, name: 'R4', brand: 'Renault', year: 

1978, chassis: id3]. 

 

 

The reader will notice in the latter case that the two cars 

would have shared the same chassis. This kind of distinction 

is easily expressed in object languages or object-oriented 

databases. 

B. Information sharing 

The above example brings us to the other important facet 

of object unification: data sharing between objects. If in the 

definition of id3 and id4 above, the "weight" field of id3 had 

the value of a free variable P and the "type" field of id4 had 

the value of a free variable T : 

 id3 -> [class: chassis, type: 'XF330', weight: P] 

 id4 -> [class: chassis, type: T, weight: 200] 

then the unification of id3 and id4 or id1 and id2 allows 

to unify P with the constant 200 and the variable T with the 

value 'XF330'. Wethenobtain: 

 id3 -> [class: chassis, type: 'XF330', weight: 200] 

 id4 -> [class: chassis, type: 'XF330', weight: 200] 

C. Formal unification 

The core of the computational model of logic programs 

is the unification algorithm [Ait Kaci 91] [Boizumault 88] 

[Colmerauer 71] [Colmerauer 73] [Colmerauer 75] 

[Colmerauer 82] [Colmerauer 89] [Colmerauer 92] 

[Colmerauer 93] [Clocksin- 03] [Debarbieri 89] [Debarbieri 

90] [Delahaye 86] [Delahaye 88] [Deransart 85] [Deransart 

86] [Deransart 89a] [Deransart 89b] [Deransart 91] 

[Deransart 92] [Deransart 96] [Ferrand 92] [Kornfeld 83] 

[Kahn 81] [Jaffar 88] [ISO 93] [Geyres 89]. Unification 

allows us to determine, if it exists, the common instance of 

two terms. Unification is the basis of most of the work in 

automatic deduction and the use of logical inference in 

artificial intelligence [Debarbieri 89] [Debarbieri 90] 

[Delahaye 86] [Delahaye 88] [Ferrand 92] [Haton 91] [Huet 

86] [Savory 06] [Shapiro 86] [Sethi 96] [Sterling 84] 

[Sterling 86a] [Sterling 86b] [Sterling 87] [Sterling 90] 

[Thaye 88] [Thaye 89] [Ueda 85] [Ueda 86] [Warren 77a] 

[Warren 77b] [Warren 83] [O'Keefe- 90] [ISO 93] [Geyres 

89]. In Prolog, the resolution uses a parameter passing 

mechanism by substitution of variables between two terms 

[Boizumault 88] [Robinson 65]. The principle of unification 

is to find a substitution of a set of expressions such that all 

substituted expressions are identical. The concept of 

unification was introduced in 1930 by Herbrand [Herbrand 

31]. It was discovered again in 1963 by Robinson to be 

exploited as a resolution filtering technique, which allowed 

to reduce the search space [Robinson 65]. We must therefore 

define what substitutions and unification are. 

 

a) Substitution 

Substitution is an application from the set of variables to 

the set of terms. It allows you to substitute a set of variables 

in formulas to obtain another formula. 
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A term t is a common instance of two terms t1 and t2 if 

substitutions 1 and 2 such that t equals 1t1 and 2t2. A 

term s is more general than a term t if t is an instance of s, 

but s is not an instance of t. A term s is an alphabetic variant 

of a term t if both s is an instance of t and t is an instance of 

s. A unifier of two terms is a substitution making the terms 

identical. If two terms have a unifier, we say that they unify. 

There is a close relationship between unifiers and common 

instances. Any unifier determines a common instance, and 

conversely, any common instance determines a unifier. 

 

b) Most General Unifier » (mgu) 

The question can be asked whether, for two given 

formulas, there is always a most general unifier. To do this, 

we must first define the differences between two formulas 

and then the algorithm that constructs the upg of two 

formulas. Unification is not a simple pattern matching that 

returns true if two terms are equal. Unification makes the two 

terms equal. And you need to understand this to program in 

Prolog. 

 

A most general unifier or mgu of two terms is a unifier 

such that the associated common instance is the most 

general. If two terms unify, then there is a unique more 

general unifier. This uniqueness is subject to variable 

renaming. Equivalently, two unifiable terms have a unique 

most general common instance, at an alphabetic variant. 

 

c) Unification algorithm 

To fully understand the algorithm used by Prolog to run 

a program, one must first understand unification. Intuitively, 

unification attempts to determine whether there is a way to 

instantiate two expressions to make them equal.  More 

formally, the unification of two terms, T1 and T2, is a 

substitution θ such that T1 = T2. We denote the unifier of 

T1 and T2. For example, the substitution {Y = joao, X = 

mother(joao)} is a unifier of the statements love(joao,X) and 

love(Y,mother_of(Y)). 

 

Unification appears as a parameter passing mechanism 

but also as a tool for data selection and construction. The 

program ends when a resolution step produces a new empty 

goal. 

 

If any, a unification algorithm calculates the more 

general unifier of two terms and displays failure otherwise. 

The algorithm for unification presented below is based on the 

solution of equations. The input to the algorithm consists of 

two terms T1 and T2. The algorithm's output is the mgu of 

the two terms if they unify or fail if they do not unify. The 

algorithm uses a stack to store the equations to be solved and 

a location  to group the substitution that the output 

contains. 

 

Input:  two terms T1 and T2, to be unified 

Output:  , the mgu of T1 and T2, or failure 

Algorithm : 

Initialize: 

  the substitution  to be empty, and the stack 

to contain  

the equation T1 = T2 and failure to false  

While the stack is not empty and no failures occur, do: 

  remove X = Y from the stack 

  case:  

   X is a variable with no occurrence 

in Y: 

substitute Y for X in the 

stack  

and in  and add X = Y to 

 

Y is a variable with no occurrence 

in X: 

substitute X for Y in the 

stack  

and in  and add Y = X to 

 

X and Y are identical constants or 

variables  

identical variables: continue X is  

f(X1,...,Xn) and Y is f(Y1,...,Yn) 

    for a functor f and n ≥ 1:  

stack Xi = Yi, (i=1,...,n) 

on the stack 

else failure := true 

End While 
 

if failure, then output failure else output  

Intuitively, two predicate expressions T1 and T2, 

unify if they are formed from the same predicate, with the 

same number of arguments. Each argument of the predicate 

of T1 must unify with the argument at the same position in 

T2. Remember that each argument is itself a term, which can 

be a variable, a constant, or a compound term. Two terms 

unify if one of the following three conditions is met: 

- both terms are identical constants ; 

- one of the terms is an uninstantiated variable. In this 

case, the variable will be instantiated by the other term; 

- the two terms have the same functor and the same 

number of arguments, and the arguments unify. 
 

d) Algorithm for running a program 

The unification algorithm, due to Robinson, allows to 

determine the most general unifier between two expressions 

[Boizumault 88] [Bratko 01] [Robinson 65] [Colmerauer 73] 

[Colmerauer 75] [Colmerauer 82] [Colmerauer 89] 

[Colmerauer 92] [Colmerauer 93]. In this algorithm, S is a 

finite set of simple expressions, and the mgu k represents the 

most general unifier of this set of formulas. 

(1) k=0, k =empty 

(2) if Sk is a singleton, the substitution k is an mgu of S, 

else determine Dk the set of different Sk. 

(3) if there are v and t in Dk such that v is a variable not 

appearing in t, k+1 = k + {v  t}, else S is not unifiable. 
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The vast majority of Prolog systems do not use the 

classical unification algorithm, making the deliberate choice 

not to perform the occurrence test (a variable can be unified 

to a term containing it) [Boizumault 88] [Bratko 01] 

[Colmerauer 73] [Colmerauer 75] [Colmerauer 82] 

[Colmerauer 89] [Colmerauer 92] [Colmerauer 93]. This 

choice is not without problems at the theoretical level since it 

challenges the Herbrand universe model limited to finite 

terms [Herbrand 30] [Herbrand 67]. At a more operational 

level, the implementation without special precautions of such 

an algorithm, ignoring the occurrence test, makes it prone to 

loops. Thus, unlike the original unification algorithm 

[Robinson 65] [Robinson 80a] [Robinson 80b], a variable 

may be linked to a term containing it. The main reason for 

this omission is a significant gain in execution time. Indeed, 

carrying out the occurrence test is a costly operation since for 

each creation of substitution {(x,t)}, it obliges to browse the 

whole term t to determine whether the variable x is in t or 

not. 

 

A brief study of Robinson's unification algorithm shows 

us that it is difficult to achieve. Current implementations of 

the Prolog language use an algorithm based on the following: 

 

Input: X and Y to be unified,  

Output: one mgu or unification failure.  

Algorithm:  

initialise to empty,  

drop on the stack (X, Y)   

failure= false  

while stack not empty and not failed do 

 unstack (X, Y) 

 depending on what 

 - X and Y are identical constants, continue 

 - X is a variable that does not appear in the term Y,  

  substitute X for Y in the stack 

  add to  the substitution (X <- Y). 

   - Y is a variable that does not appear in the term X,  

  substitute Y for X in the stack  

  add to  the substitution (Y <- X). 

 - X= f((Xi)n) and Y= f((Yi)n), 

  drop (Xi, Yi) in the stack, for all i 

 - default : failure = true 

 end (depending on what) 

end ( while). 

if failure = true return unification failure 

else return , the mgu of X and Y . 

 

Thus, this unification algorithm finds a most general 

unifier (mgu) of two expressions when it exists. If it does 

not, it mentions it as a failure. 

 

e) Resolution algorithm 

One of the main ideas of logic programming due to 

Kowalski [Kowalski79a] [Kowalski79b] [Kowalski 88] is 

that an algorithm is made up of two components; the first 

component, the logic, makes it possible to specify a problem 

to be solved, the second component, the control, makes it 

possible to describe how the problem is to be solved.  An 

ideal logic programming system would be to program in the 

purely declarative part, i.e., the logic component. Only the 

control part would be left to this system. Unfortunately, 

current logic programming systems have not yet achieved 

this, and the user needs to know how to express control at the 

clause level and how the system uses it to modify the 

solution of a problem. Essentially, a Prolog program is 

composed of rules, clauses declaring a fact that depends on 

other facts. These rules have the following form: 

 

H:- B1,B2, . . .,Bn 

H and B1, B2, . . ., Bn constitute the head and body of the 

rule, respectively. 

The meaning of a rule is as follows: To solve a goal H, one 

must solve the conjunction of goals B1, B2, . . ., Bn. A fact 

can be considered as a clause without a body. 

To satisfy a query, the Prolog interpreter uses the resolution 

algorithm, which uses a stack, called the resolver, to hold all 

the goals that remain to be solved (note that we consider here 

that a fact is a clause whose body is empty): 

0) Position yourself in the first clause of the program. 

1) Resolvent← query 

2) While the resolvent is not empty : 

 2.1) Obj ← First objective of the resolvent 

 2.2) Remove the first objective from the resolvent 

 2.3) Find the first clause  

C = H : -B1, B2, . . . Bn such that  

H unifies with Obj 

 If we succeed 

  2.4) Add at the beginning of the resolvent 

all  

   goals B1,B2,...Bn 

  2.5) If there are other heads of clauses  

   unifiable with Obj 

         Memorize the position of the clause C  

   as the last point of choice 

  2.6) Return to 2.1 

 Else 

  2.7) If there are choice points: 

   Backtrack to the last point of 

choice 

   Return to step 2.3 

  Else : 

   Return FAIL 

3) Return the instantiation of the variables of the query 

It is important to note that in this process, the system 

stores the instantiated variables. When a variable is 

instantiated in a rule, either in the head or in the body, the 

same instantiation applies to all variable occurrences in the 

rule. When the interpreter backtracks to a choice point, it 

discards the result of all unifications that were performed 

between the time the choice point was stored and the time of 

failure. 
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f) Backtracking with several points of choice 

When there is more than one choice point at the 

backtracking, care should be taken to identify which one will 

be considered first. Backtrack to the choice point 

corresponding to the last unified goal for which there were 

other unification possibilities. 

II. UNIFICATION OF LOGIC OBJECTS: SIMPLE 

CASE 

A. Principle 

In the simple case, two instances i1 and i2, are 

semantically unifiable if the values of their respective 

attributes are unifiable in the Prolog sense. This definition 

does not take into account composite objects. 
 

Consider two objects i1 = <a1 = v11, ..., an = vn1n> and 

i2 = <a1 = v21, ..., an = vn2n> two instances of a class C. 

The principle of the unification procedure in the simple case 

is "for any attribute aj of class C, unify the values v1j and 

v2j". 
 

We then say that i1 and i2 are unifiable if the values of 

their common attributes are unifiable. Since the class of an 

object is represented by the value of the attribute class(#' 

Object'), this means that both objects must belong to the 

same class. For example if i1 = [class: chassis, type: 'XF330', 

weight: P] and i2 = [class: chassis, type: T, weight: 200] 
 

P and T being free variables, then i1 and i2 are unifiable 

since T and 'XF330' are unifiable, likewise for P and 200. On 

the other hand, if i'1 = [class: chassis, type: 'XF630', weight: 

200] then i1 and i'1 are not structurally unifiable since 

'XF330' and 'XF630' are not unifiable. As in a psi-term, the 

arguments in this list of attributes of an object are indicated 

by the pairs (attribute, value) rather than by their position in 

the list. Therefore, the order of the attributes in this list is not 

important since these arguments are identified by the name 

of the attribute rather than by their position. 

B. Algorithm 

A formal description of the semantic unification 

algorithm in the simple case is as follows: 

 

Input: two terms T1 and T2, to be unified 

Output: , the upg of T1 and T2, or failure 

Algorithm: 

 Initialise: the substitution to be empty, and 

   the stack to contain the equation  

T1 = T2 and failure to false 

 

 Until stack is empty and no failures occur, do 

  unstack X = Y from the stack 

  case: 

  X is a variable with no occurrence in Y  

occurrence in Y: 

   substitute Y for X in the stack and  

in and add X = Y to  

  Y is a variable with no occurrence in X  

occurrence in X: 

   substitute X for Y in the stack and  

in and add Y = X to  

  X and Y are constants or variables identical: 

continue 

  X is f(X1,...,Xn) and Y is f(Y1,...,Yn) 

   case: 

   f is # and n equals 1 

   case: 

X1 is a variable that has 

no occurrence in Y1: 

     substitute Y1 for  

X1 in the stack and  add  

X1 = Y1 to  
     

Y1 is a variable that has 

no occurrence in X1: 

     substitute X1 for  

Y1 in the stack and  add  

Y1 = X1 to  
 

X1 and Y1 are atomic 

constants or identical 

variables: continue 

X1 and Y1 are atomic 

constants that are not 

identical: 

Calculate the sets E1 

and E2 of the attributes 

of each of the objects 

X and Y. 
 

if E1 and E2 are equal  

and E1 = E2 = {a1, ..., 

aj} then 

     Let V1 = [v11,  

..., v1j] and V2 

= [v21, ..., v2j] 

the respective 

lists of values of 

their respective 

their attributes. 
 

stack V1 = V2 

on the stack 

    else failure := true 

    else failure := true 

   else 

for a functor f different 

from # and n ≥ 1: stack 

Xi = Yi, i=1,...,n on the 

stack 

   else failure := true 

  End Until 

  if failure, then output failure 

  then output  
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The algorithm stops : 

 - in case of failure: L1 and L2 are not equal, or there 

is an attribute ai such that v1i and v2i (the values 

corresponding to the two objects) are not unifiable. 

 - on success: L1 and L2 are equal, and all attribute 

values are unifiable.  

 

In OO-Prolog as in the object approach [Ngomo 1994a] 

[Ngomo 1994b] [Ngomo 1995a] [Ngomo 1995b] [Ngomo 

1996] [Malenfant 90] [Meseguer 91] [Meseguer 92] 

[Meseguer 93] [McCabe 92], an object has a unique 

identifier, which makes it possible to distinguish objects. 

Two distinct objects cannot have the same identifier. In this 

case, applying the Prolog unification procedure to two OO-

Prolog objects will always fail since two distinct identifiers 

can never be unified. Therefore, we need to modify the 

classic Prolog unification procedure to take into account the 

objects and the inheritance relationship. 

 

For the object layer to react homogeneously with the rest 

of the Prolog language, it must have mechanisms identical to 

those of all data types present in Prolog. We propose to 

define a specific mechanism to take objects into account. In 

the case of objects, the use of this primitive poses the 

problem of names referencing objects. Two structurally 

unifiable objects can have different identifiers. There is no 

valid justification for accepting a success for the unification 

of different object names while the unification of distinct 

functor terms fails even if all other elements composing the 

terms are identical [Cervoni 94]. As a consequence, we are 

obliged to have specific operators for object names. In OO-

Prolog, the name of an object is preceded by the operator #:# 

<name>. 

For example, "#' Point'" instead of 'Point'. This 

notation is used to distinguish object names from other 

Prolog terms. 

C. Example 

 

Declaration of the Car class: 

 #’ Car’ with 

 [ class(#’Object’) := #’Class’, 

 inherits(#’Class’) := [#’Object’], 

 attributes(#’Class’) := [  

   name(#’Car’), 

   brand(#’Car’), 

   year(#’Car’) <=  

year:number(Year), 

   chassis(#’Car’) <=  

Chassis:#’Chassis’] 

 ]. 

 

Declaration of the Chassis class: 

 #’ Chassis’ with 

 [ class(#’Object’) := #’Class’, 

  inherits(#’Class’) := [#’Object’], 

  attributes(#’Class’) :=  

[type(#’Chassis’),weight(#’Chassi

s’) <= P:number(P)] 

 ]. 

 

Example of structural comparison of objects 

 

> #’Chassis’ <- new(C1,[type(_) := 'XF330',poids(_) 

:= 200]), 

#’Chassis’ <- new(C2,[type(_) := 'XF330', weight(_) 

:= 200]), 

C1 <- unify(C2), 

(C1,C2) <- display. 

 

TERMINAL :: #[#'Chassis',1] 

type(#'Chassis') <- 'XF330' 

weight(#'Chassis') <- 200 

class(#'Object') <- #'Chassis' 

 

TERMINAL :: #[#'Chassis',2] 

type(#'Chassis') <- 'XF330' 

weight(#'Chassis') <- 200 

class(#'Object') <-  #'Chassis' 

 

{C1 = #[#'Chassis',1],C2 = #[#'Chassis',2]} 

true 

 

Example of data sharing 

 

> #’Chassis’ <- new(C1,[type(_) := 'XF330',poids(_) 

:= P]), 

#’Chassis’ <- new(C2,[type(_) := T, weight(_) := 

200]), 

C1 <- unify(C2),(C1,C2) <- display. 

 

TERMINAL :: #[#'Chassis',1] 

type(#'Chassis') <- 'XF330' 

weight(#'Chassis') <- 200 

class(#'Object') <- #'Chassis' 

 

TERMINAL :: #[#'Chassis',2] 

type(#Chassis) <- 'XF330' 

weight(#Chassis) <- 200 

class(#'Object') <-  #'Chassis' 

 

{C1 = #[#'Chassis',1],P = 200, 

C2 = #[#'Chassis',2], T = 'XF330'} 

III. RECURSIVE UNIFICATION  

The algorithm described above does not take into 

account composite objects. Indeed, suppose the values to be 

unified are names of distinct but semantically unifiable 

objects. In that case, the unification procedure will fail since 

the two objects have non-unifiable identifiers in the sense of 

Prolog. To take into account composite objects, the above 
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definition will be improved as follows: two instances i1 and 

i2, are semantically unifiable if and only if the values of their 

respective attributes are unifiable in the Prolog sense or 

semantically unifiable. 

A. Principle 

In the case of composite objects, the procedure is a little 

more complex. Indeed, if the values of the attributes are 

objects, one cannot proceed as in the case of simple objects, 

i.e., unify their identifiers. Since two non-equal objects 

cannot have the same identifier, the unification procedure 

would fail. Recall that we want to unify objects structurally, 

not syntactically. Of course, syntactic unification 

automatically leads to semantic unification. To unify 

composite objects semantically, they must be flattened, i.e., 

when the values of the attributes are objects, the semantic 

unification procedure must be applied by recursion to these 

two objects while managing any cycles. In this case, the 

objects  

id1 -> [class: car, name: 'R4', make: 'Renault', year: 

1978, chassis: id3] 

id2 -> [class: car, name: 'R4', make: 'Renault', year: 

1978, chassis: id4] 

will be semantically unifiable, the other values being 

unifiable if id3 and id4 are also unifiable. We must then 

enrich the above algorithm by including the case of object 

values. 

B. Algorithm 

The algorithm we describe here is limited to the case 

where the two objects to be unified belong to the same class. 

We will see in the following how to extend this algorithm to 

other situations. Currently, the algorithm is limited to the 

case where the two objects to be unified belong to the same 

class. For two objects with different classes, the 

classification mechanism can assign them to the same class. 

In the algorithm below, we assume that the two objects 

belong to the same class. 

Input :  wo terms T1 and T2 to be unified 

Output :  , mgu of T1 and T2, or failure 

Algorithm: 

 Initialise: 

  the substitution to be empty,  

  the stack to contain the equation T1 = T2,  

and failure is false 

 Until the stack is empty and there is no failure do 

  remove X = Y from the stack 

  case: 

   X is a variable that has no  

occurrence in Y: 

    substitute Y for X in the  

    stack and in and add X = 

Y to  

   Y is a variable that has no  

occurrence in X: 

    substitute X for Y in the  

    stack and in and add Y = 

X to  

X and Y are identical constants or 

variables: continue 

   X is f(X1,...,Xn) and Y is 

f(Y1,...,Yn) 

   case: 

   f is # andn is 1 

    case: 

     X1 is a 

variable with no 

occurrence in Y1: 

     substitute Y1 

for X1 

in the stack 

and in add  

X1 =  

Y1 to  

    Y1 is a  

variable with no  

occurrence in X1: 

     substitute X1 

for Y1  

in the stack  

and in add  

Y1 =  

X1 to  

X1 and Y1 are  atomic 

constants or identical 

variables: continue 

X1 and Y1 are atomic 

constants that are not 

identical: 

Calculate the 

sets E1 and E2 

of the attributes 

of objects X and 

Y. 

     If L1 and L2 are  
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   equal (L1 = L2 

=  

{a1, ...,aj}) 

      Let V1 =  

[V11, ...,   

V1j] and V2 = 

[V21, ..., V2j] 

     stack V1i =  

V2i, i=1,...,n on  

the stack 

     elsefailure := 

true   else failure := true 

  else for a functor f different from # and n ≥ 

1: 

   add Xi = Yi, i=1,...,n on the stack 

  else failure := true 

 End Until 

 If failure, thenoutputfailure 

 elseoutput  

Let us emphasize here the role of the object identifier. It 

offers flexibility in manipulating objects, and an object 

identifier also allows information to be shared without 

duplication. Indeed, since an object can reference another 

object directly by its identifier, the direct consequence is that 

the referencing object shares all the information contained in 

the referenced object, and any modification of the referenced 

object is directly visible if accessed from the referencing 

object. Similar to what can happen with Prolog terms, 

unification is defeated on a rollback. An implementation of 

this algorithm in Prolog is provided in [Ngomo 1996]. 

C. Example 

Example of a structural comparison: 

> #'Car' <- new(V1,[ 

 name(#'Car') := 'R4', 

 brand(#'Car') := 'Renault', 

 year(#'Car') := 1978, 

 chassis(#'Car') := C1]), 

#'Car' <- new(V2,[ 

 name(#'Car') := 'R4', 

 brand(#'Car') := 'Renault', 

 year(#'Car') := 1978, 

 chassis(#'Car') := C2]), 

#'Chassis' <- new(C1,[type(#'Chassis') := 

 'XF330',weight(#'Chassis') := 200]), 

#'Chassis' <- new(C2,[type(#'Chassis') := 

 'XF330',weight(#'Chassis') := 200]), 

V1 <- unify(V2), (V1,V2) <- display. 

 

TERMINAL :: #[#'Car',1] 

name(#'Car') <- 'R4 

brand(#'Car') <- 'Renault' 

year(#'Car') <- 1978 

chassis(#'Car') <- #[#'Chassis',3] 

class(#'Object') <- #'Car' 

 

TERMINAL :: #[#'Car',2] 

name(#'Car') <- 'R4 

brand(#'Car') <- 'Renault' 

year(#'Car') <- 1978 

chassis(#'Car') <- #[#'Chassis',4] 

class(#'Object') <- #'Car' 

 

{V1 = #[#'Car',1],C1 = #[#'Chassis',3],V2 = 

#[#'Car',2],C2 = #[#'Chassis',4]} 

 

Example of data sharing between objects: 
 

> #'Chassis' <- new(C1,[type(#'Chassis') := 

 'XF330',weight(#'Chassis') := P]), 

#'Chassis' <- new(C2,[type(#'Chassis') := 

 T,weight(#'Chassis') := 200]),C1 <- unify(C2),  

all(X,member(X,[C1,C2]))  <- display. 

 

 TERMINAL :: #[#'Chassis',1] 

  type(#'Chassis') <- 'XF330' 

  weight(#'Chassis') <- 200 

  class(#'Object') <- #'Chassis' 

 

 TERMINAL :: #[#'Chassis',2] 

  type(#'Chassis') <- 'XF330' 

  weight(#'Chassis') <- 200 

  class(#'Object') <- #'Chassis' 

 {C1 = #[#'Chassis',1],C2 = #[#'Chassis',2]} 

> #'Car' <- new(V1,[ 
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name(#'Car') := 'R4', 

brand(#'Car') := 'Renault', 

year(#'Car') := 1978, 

chassis(#'Car') := C1]), 

#'Car' := 'Renault <- new(V2,[ 

 name(#'Car') := 'R4', 

 brand(#'Car') := 'Renault', 

 year(#'Car') := 1978, 

 chassis(#'Car') := C2]), 

#'Chassis' <- new(C1,[type(#'Chassis') := 

        'XF330',weight(#'Chassis') := P]), 

#'Chassis' <- new(C2,[type(#'Chassis') := 

        T,weight(#'Chassis') := 200]), 

V1 <- unify(V2), (V1,V2) <- display. 

 

TERMINAL :: #[#'Car',1] 

name(#'Car') <- R4 

brand(#'Car') <- Renault 

year(#'Car') <- 1978 

chassis(#'Car') <- #[#'Chassis',3] 

class(#'Object') <- #'Car' 

 

TERMINAL :: #[#'Car',2] 

name(#'Car') <- R4 

make(#'Car') <- 'Renault' 

year(#'Car') <- 1978 

chassis(#'Car') <- #[#'Chassis',4] 

class(#'Object') <- #'Car' 

 

{V1 = #[#'Car',1],C1 = #[#'Chassis',3],V2 = #[#'Car',2],C2 

= #[#'Chassis',4],P=200,T='XF330'} 

IV. SOME EXTENSIONS OF THE STRUCTURAL 

UNIFICATION ALGORITHM FOR LOGIC OBJECTS 

The unification of two terms of the same class consists 

mainly in recursively unifying the fields of the structures of 

the instances. In the case of objects, two instances of the 

same class are semantically unifiable if and only if the values 

of their respective attributes are unifiable in the Prolog sense 

or semantically unifiable. This definition does not allow us, 

for example, to unify a rectangle of length 4 and width 4 with 

a square of side 4 unless we use the classification 

mechanism. Again, the user must explicitly express the 

classification constraints. If the instances are not of the same 

class, we must look for a possible inheritance relationship 

between them that would allow us to unify them by 

specialization or generalization. We propose below some 

extensions of the above algorithm. These extensions are not 

yet implemented in OO-Prolog but are verified. 

V. CONCLUSION 

In this paper, we have presented an algorithm for 

extending the syntactic unification of Prolog to the structural 

unification of logic objects. The algorithm currently 

implemented in OO-Prolog is limited to the case where the 

two objects to be unified belong to the same class. The 

extensions proposed in this study remain to be implemented. 
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