
International Journal of Computer Trends and Technology Volume 69 Issue 10, 12-22, October 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I10P102 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Structural Unification of the Logic Objects

Macaire Ngomo

CM IT CONSEIL – Engineering and Innovation Department – 32 rue Milford Haven 10100 Romilly sur Seine (France).

Received Date: 04 September 2021

Revised Date: 05 October 2021

 Accepted Date: 17 October 2021

Abstract - This paper is devoted to the structural unification

of Logic Objects. The basic idea of the OO-Prolog language

is the definition of a model in which objects are constructed

by unification and undone by backtracking. In OO- Prolog,

the resolution is based on a logical deduction of all

consequences of the knowledge base via unification. In

contrast, Prolog's unification mechanism is limited to

syntactic processing and cannot consider the OO-Prolog

language's objects. For the object layer of OO-Prolog to

react homogeneously with the rest of the Prolog language, it

is necessary to have a unification mechanism that considers

Logic Objects. In this study, we propose building a

unification scheme that considers the semantics of objects.

This provides the user with a tool for comparing objects

(from a structural point of view) and sharing data between

objects. The algorithm we propose is limited to the case

where the two objects to be unified belong to the same class.

However, extensions of the algorithm to more general cases

are proposed.

Keywords - Logic programming, Prolog, OO-Prolog, object

programming, logic objects, unification, structural

unification of logic objects.

I. INTRODUCTION

Logic programming was developed in the early 1970s to

extend earlier work on the automatic translation of theorems

and artificial intelligence. Since logic sought to model human

reasoning, it was hoped to simulate it on a computer.

Building on the work done by Herbrand in 1930 [Herbrand

67], Prawitz [Prawitz 60], Gilmore [Gilmore 60a] [Gilmore

60b], Martin Davis and Hilary Putnam [Davis 60] and others,

worked extensively on automatic theorem proving in the

early 1960s. This effort culminated in 1965 with the central

paper by Robinson [Robinson 65], which introduced the

resolution rule. Solving is an inference rule that is

particularly well suited to automation on a computer [Lloyd

87] [Lloyd 88].The credit for the introduction of logic

programming goes mainly to Kowalski [Kowalski 70]

[Kowalski 71] [Kowalski 74a] [Kowalski 74b] and

Colmerauer [Colmerauer 72] [Colmerauer 73] [Colmerauer

75] [Colmerauer 92] [Colmerauer 93] even though others

should be mentioned in this regard: Roussel [Roussel 72]

[Roussel 75], Pasero Robert [Pasero 73], Jean Trudel

[Colmerauer 71], Henry Kanoui [Kanoui 73], Battani

[Battani 73], Green [Green 69], Hayes [Hayes 73], etc. In

72, Kowalski and Colmerauer came up with the fundamental

idea that logic could be used as a programming language.The

acronym Prolog (PROgramming in LOGic) was invented and

the first Prolog interpreter [Colmerauer 73] [Colmerauer 75]

was implemented in ALGOL-W by Roussel [Roussel 72]

[Roussel 75] [Colmerauer 92] [Colmerauer 93], in Marseille

(France) in 72.

Prolog (PROgramming in LOGic) was thus born out of

the need to be able to process natural language by computer

and, in particular, grammar [Colmerauer 73] [Colmerauer

75] [Colmerauer 82] [Colmerauer 89] [Colmerauer 92]

[Colmerauer 93] [Clocksin-03][Cohen 88]. Since then, we

can count many other application areas: Relational databases,

Logic (and mathematics), Abstract problem solving, Natural

language processing, Symbolic equation solving, Artificial

intelligence, etc. Various implementations are available:

Standard ISO, SWI-Prolog (Dept. of Social Science

Informatics, www.swi-prolog.org), Prolog III (PrologIA),

SICStusProlog (www.sics.se/sicstus), Open Prolog

(www.cs.tcd. i.e./open-prolog), GNU Prolog, AllegroProlog,

BProlog, Visual Prolog (Prolog Development Center A/S),

YAP-Prolog, LPA-PROLOG, PoplogProlog, Turbo Prolog

(Borland), IF-Prolog (Siemens Nixdorf), DelphiaProlog

(Siglos), BIM Prolog (Integral Solutions Limited), Win-

Prolog (Logic Programming Associates), PDC Prolog

(Prolog Development Center), Quintus Prolog (AI

International Limited), etc. (Comparison of Prolog

implementations:

https://en.wikipedia.org/wiki/Comparison_of_Prolog_imple

mentations).

Hewitt's PLANNER system [Hewitt. 69] [Hewitt 70]

[Hewitt 72] [Hewitt. 09] can be seen as a predecessor of

Prolog. The idea that first-order logic or at least some of its

substantial subsets could be used as a programming language

was revolutionary at the time because, until 72, logic had

only ever been used as a declarative or specification

language in computer science [Lloyd 88]. The birth of logic

programming meant the advent of specifications that

computers could directly execute. However, Kowalski shows

us in [Kowalski 74a] [Kowalski 74b] that logic has a

procedural interpretation, which makes it very effective as a

programming language.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

13

One of the main ideas of logic programming, due to

Kowalski [Kowalski 70] [Kowalski 71] [Kowalski 79a]

[Kowalski 79b] [Kowalski 88], is that an algorithm is made

up of two disjoint components, logic and control. The logic

formulates the problem to be solved while the control

formulates how to solve it [Kowalski 79a] [Kowalski 79b]

[Kowalski 88] [Lloyd 87] [Lloyd 88]. In general, a logic

programming system should provide the programmer with

the means to specify these components. However, separating

these two components has a number of advantages, not least

of which is the ability for the programmer to specify only the

logic component of an algorithm and leave control solely to

the logic programming system itself [Lloyd 88]. In other

words, an ideal logic programming system is purely

declarative logic programming. Unfortunately, current logic

programming systems have not yet achieved this.

In the object-oriented programming approach, there are

several reasons to extend the syntactic unification of Prolog

to the structural unification of objects.

A. Structural comparison of objects

Consider the following two objects :

 id1 -> [class: car, name: 'R4', brand: 'Renault', year:

1978]

 id2 -> [class: car, name: 'R4', brand: 'Renault', year:

1978]

For the system, there are two very distinct objects. On

the other hand, their values are equal and we can say that

these two objects are semantically unifiable (equal value in

the terminology of object-oriented databases [Delobel 91]).

In the following case :

 id1 -> [class: car, name: 'R4', brand: 'Renault', year:

1978, chassis: id3]

 id2 -> [class: car, name: 'R4', brand: 'Renault', year:

1978, chassis: id4]

whereid3 and id4 are object identifiers, with :

 id3 -> [class: chassis, type: 'XF330', weight: 200]

 id4 -> [class: chassis, type: 'XF330', weight: 200]

Although the identifiers id3 and id4 are not equal, they

denote two semantically equal objects. Therefore, and by

recursion, id1 and id2 are also semantically equal or "deep

equal" in the terminology of some systems, for example, the

Eiffel system. This equality means that the values may differ,

but when we expand them by replacing the identifiers with

the values of the objects they represent, we find two objects

with the same structure. Everything happens as if we had :

 id1 -> [class: car, name: 'R4', brand: 'Renault', year:

1978, chassis: id3]

 id2 -> [class: car, name: 'R4', brand: 'Renault', year:

1978, chassis: id3].

The reader will notice in the latter case that the two cars

would have shared the same chassis. This kind of distinction

is easily expressed in object languages or object-oriented

databases.

B. Information sharing

The above example brings us to the other important facet

of object unification: data sharing between objects. If in the

definition of id3 and id4 above, the "weight" field of id3 had

the value of a free variable P and the "type" field of id4 had

the value of a free variable T :

 id3 -> [class: chassis, type: 'XF330', weight: P]

 id4 -> [class: chassis, type: T, weight: 200]

then the unification of id3 and id4 or id1 and id2 allows

to unify P with the constant 200 and the variable T with the

value 'XF330'. Wethenobtain:

 id3 -> [class: chassis, type: 'XF330', weight: 200]

 id4 -> [class: chassis, type: 'XF330', weight: 200]

C. Formal unification

The core of the computational model of logic programs

is the unification algorithm [Ait Kaci 91] [Boizumault 88]

[Colmerauer 71] [Colmerauer 73] [Colmerauer 75]

[Colmerauer 82] [Colmerauer 89] [Colmerauer 92]

[Colmerauer 93] [Clocksin- 03] [Debarbieri 89] [Debarbieri

90] [Delahaye 86] [Delahaye 88] [Deransart 85] [Deransart

86] [Deransart 89a] [Deransart 89b] [Deransart 91]

[Deransart 92] [Deransart 96] [Ferrand 92] [Kornfeld 83]

[Kahn 81] [Jaffar 88] [ISO 93] [Geyres 89]. Unification

allows us to determine, if it exists, the common instance of

two terms. Unification is the basis of most of the work in

automatic deduction and the use of logical inference in

artificial intelligence [Debarbieri 89] [Debarbieri 90]

[Delahaye 86] [Delahaye 88] [Ferrand 92] [Haton 91] [Huet

86] [Savory 06] [Shapiro 86] [Sethi 96] [Sterling 84]

[Sterling 86a] [Sterling 86b] [Sterling 87] [Sterling 90]

[Thaye 88] [Thaye 89] [Ueda 85] [Ueda 86] [Warren 77a]

[Warren 77b] [Warren 83] [O'Keefe- 90] [ISO 93] [Geyres

89]. In Prolog, the resolution uses a parameter passing

mechanism by substitution of variables between two terms

[Boizumault 88] [Robinson 65]. The principle of unification

is to find a substitution of a set of expressions such that all

substituted expressions are identical. The concept of

unification was introduced in 1930 by Herbrand [Herbrand

31]. It was discovered again in 1963 by Robinson to be

exploited as a resolution filtering technique, which allowed

to reduce the search space [Robinson 65]. We must therefore

define what substitutions and unification are.

a) Substitution

Substitution is an application from the set of variables to

the set of terms. It allows you to substitute a set of variables

in formulas to obtain another formula.

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

14

A term t is a common instance of two terms t1 and t2 if

substitutions 1 and 2 such that t equals 1t1 and 2t2. A

term s is more general than a term t if t is an instance of s,

but s is not an instance of t. A term s is an alphabetic variant

of a term t if both s is an instance of t and t is an instance of

s. A unifier of two terms is a substitution making the terms

identical. If two terms have a unifier, we say that they unify.

There is a close relationship between unifiers and common

instances. Any unifier determines a common instance, and

conversely, any common instance determines a unifier.

b) Most General Unifier » (mgu)

The question can be asked whether, for two given

formulas, there is always a most general unifier. To do this,

we must first define the differences between two formulas

and then the algorithm that constructs the upg of two

formulas. Unification is not a simple pattern matching that

returns true if two terms are equal. Unification makes the two

terms equal. And you need to understand this to program in

Prolog.

A most general unifier or mgu of two terms is a unifier

such that the associated common instance is the most

general. If two terms unify, then there is a unique more

general unifier. This uniqueness is subject to variable

renaming. Equivalently, two unifiable terms have a unique

most general common instance, at an alphabetic variant.

c) Unification algorithm

To fully understand the algorithm used by Prolog to run

a program, one must first understand unification. Intuitively,

unification attempts to determine whether there is a way to

instantiate two expressions to make them equal. More

formally, the unification of two terms, T1 and T2, is a

substitution θ such that T1 = T2. We denote the unifier of

T1 and T2. For example, the substitution {Y = joao, X =

mother(joao)} is a unifier of the statements love(joao,X) and

love(Y,mother_of(Y)).

Unification appears as a parameter passing mechanism

but also as a tool for data selection and construction. The

program ends when a resolution step produces a new empty

goal.

If any, a unification algorithm calculates the more

general unifier of two terms and displays failure otherwise.

The algorithm for unification presented below is based on the

solution of equations. The input to the algorithm consists of

two terms T1 and T2. The algorithm's output is the mgu of

the two terms if they unify or fail if they do not unify. The

algorithm uses a stack to store the equations to be solved and

a location to group the substitution that the output

contains.

Input: two terms T1 and T2, to be unified

Output: , the mgu of T1 and T2, or failure

Algorithm :

Initialize:

 the substitution to be empty, and the stack

to contain

the equation T1 = T2 and failure to false

While the stack is not empty and no failures occur, do:

 remove X = Y from the stack

 case:

 X is a variable with no occurrence

in Y:

substitute Y for X in the

stack

and in and add X = Y to

Y is a variable with no occurrence

in X:

substitute X for Y in the

stack

and in and add Y = X to

X and Y are identical constants or

variables

identical variables: continue X is

f(X1,...,Xn) and Y is f(Y1,...,Yn)

 for a functor f and n ≥ 1:

stack Xi = Yi, (i=1,...,n)

on the stack

else failure := true

End While

if failure, then output failure else output

Intuitively, two predicate expressions T1 and T2,

unify if they are formed from the same predicate, with the

same number of arguments. Each argument of the predicate

of T1 must unify with the argument at the same position in

T2. Remember that each argument is itself a term, which can

be a variable, a constant, or a compound term. Two terms

unify if one of the following three conditions is met:

- both terms are identical constants ;

- one of the terms is an uninstantiated variable. In this

case, the variable will be instantiated by the other term;

- the two terms have the same functor and the same

number of arguments, and the arguments unify.

d) Algorithm for running a program

The unification algorithm, due to Robinson, allows to

determine the most general unifier between two expressions

[Boizumault 88] [Bratko 01] [Robinson 65] [Colmerauer 73]

[Colmerauer 75] [Colmerauer 82] [Colmerauer 89]

[Colmerauer 92] [Colmerauer 93]. In this algorithm, S is a

finite set of simple expressions, and the mgu k represents the

most general unifier of this set of formulas.

(1) k=0, k =empty

(2) if Sk is a singleton, the substitution k is an mgu of S,

else determine Dk the set of different Sk.

(3) if there are v and t in Dk such that v is a variable not

appearing in t, k+1 = k + {v t}, else S is not unifiable.

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

15

The vast majority of Prolog systems do not use the

classical unification algorithm, making the deliberate choice

not to perform the occurrence test (a variable can be unified

to a term containing it) [Boizumault 88] [Bratko 01]

[Colmerauer 73] [Colmerauer 75] [Colmerauer 82]

[Colmerauer 89] [Colmerauer 92] [Colmerauer 93]. This

choice is not without problems at the theoretical level since it

challenges the Herbrand universe model limited to finite

terms [Herbrand 30] [Herbrand 67]. At a more operational

level, the implementation without special precautions of such

an algorithm, ignoring the occurrence test, makes it prone to

loops. Thus, unlike the original unification algorithm

[Robinson 65] [Robinson 80a] [Robinson 80b], a variable

may be linked to a term containing it. The main reason for

this omission is a significant gain in execution time. Indeed,

carrying out the occurrence test is a costly operation since for

each creation of substitution {(x,t)}, it obliges to browse the

whole term t to determine whether the variable x is in t or

not.

A brief study of Robinson's unification algorithm shows

us that it is difficult to achieve. Current implementations of

the Prolog language use an algorithm based on the following:

Input: X and Y to be unified,

Output: one mgu or unification failure.

Algorithm:

initialise to empty,

drop on the stack (X, Y)

failure= false

while stack not empty and not failed do

 unstack (X, Y)

 depending on what

 - X and Y are identical constants, continue

 - X is a variable that does not appear in the term Y,

 substitute X for Y in the stack

 add to the substitution (X <- Y).

 - Y is a variable that does not appear in the term X,

 substitute Y for X in the stack

 add to the substitution (Y <- X).

 - X= f((Xi)n) and Y= f((Yi)n),

 drop (Xi, Yi) in the stack, for all i

 - default : failure = true

 end (depending on what)

end (while).

if failure = true return unification failure

else return , the mgu of X and Y .

Thus, this unification algorithm finds a most general

unifier (mgu) of two expressions when it exists. If it does

not, it mentions it as a failure.

e) Resolution algorithm

One of the main ideas of logic programming due to

Kowalski [Kowalski79a] [Kowalski79b] [Kowalski 88] is

that an algorithm is made up of two components; the first

component, the logic, makes it possible to specify a problem

to be solved, the second component, the control, makes it

possible to describe how the problem is to be solved. An

ideal logic programming system would be to program in the

purely declarative part, i.e., the logic component. Only the

control part would be left to this system. Unfortunately,

current logic programming systems have not yet achieved

this, and the user needs to know how to express control at the

clause level and how the system uses it to modify the

solution of a problem. Essentially, a Prolog program is

composed of rules, clauses declaring a fact that depends on

other facts. These rules have the following form:

H:- B1,B2, . . .,Bn

H and B1, B2, . . ., Bn constitute the head and body of the

rule, respectively.

The meaning of a rule is as follows: To solve a goal H, one

must solve the conjunction of goals B1, B2, . . ., Bn. A fact

can be considered as a clause without a body.

To satisfy a query, the Prolog interpreter uses the resolution

algorithm, which uses a stack, called the resolver, to hold all

the goals that remain to be solved (note that we consider here

that a fact is a clause whose body is empty):

0) Position yourself in the first clause of the program.

1) Resolvent← query

2) While the resolvent is not empty :

 2.1) Obj ← First objective of the resolvent

 2.2) Remove the first objective from the resolvent

 2.3) Find the first clause

C = H : -B1, B2, . . . Bn such that

H unifies with Obj

 If we succeed

 2.4) Add at the beginning of the resolvent

all

 goals B1,B2,...Bn

 2.5) If there are other heads of clauses

 unifiable with Obj

 Memorize the position of the clause C

 as the last point of choice

 2.6) Return to 2.1

 Else

 2.7) If there are choice points:

 Backtrack to the last point of

choice

 Return to step 2.3

 Else :

 Return FAIL

3) Return the instantiation of the variables of the query

It is important to note that in this process, the system

stores the instantiated variables. When a variable is

instantiated in a rule, either in the head or in the body, the

same instantiation applies to all variable occurrences in the

rule. When the interpreter backtracks to a choice point, it

discards the result of all unifications that were performed

between the time the choice point was stored and the time of

failure.

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

16

f) Backtracking with several points of choice

When there is more than one choice point at the

backtracking, care should be taken to identify which one will

be considered first. Backtrack to the choice point

corresponding to the last unified goal for which there were

other unification possibilities.

II. UNIFICATION OF LOGIC OBJECTS: SIMPLE

CASE

A. Principle

In the simple case, two instances i1 and i2, are

semantically unifiable if the values of their respective

attributes are unifiable in the Prolog sense. This definition

does not take into account composite objects.

Consider two objects i1 = <a1 = v11, ..., an = vn1n> and

i2 = <a1 = v21, ..., an = vn2n> two instances of a class C.

The principle of the unification procedure in the simple case

is "for any attribute aj of class C, unify the values v1j and

v2j".

We then say that i1 and i2 are unifiable if the values of

their common attributes are unifiable. Since the class of an

object is represented by the value of the attribute class(#'

Object'), this means that both objects must belong to the

same class. For example if i1 = [class: chassis, type: 'XF330',

weight: P] and i2 = [class: chassis, type: T, weight: 200]

P and T being free variables, then i1 and i2 are unifiable

since T and 'XF330' are unifiable, likewise for P and 200. On

the other hand, if i'1 = [class: chassis, type: 'XF630', weight:

200] then i1 and i'1 are not structurally unifiable since

'XF330' and 'XF630' are not unifiable. As in a psi-term, the

arguments in this list of attributes of an object are indicated

by the pairs (attribute, value) rather than by their position in

the list. Therefore, the order of the attributes in this list is not

important since these arguments are identified by the name

of the attribute rather than by their position.

B. Algorithm

A formal description of the semantic unification

algorithm in the simple case is as follows:

Input: two terms T1 and T2, to be unified

Output: , the upg of T1 and T2, or failure

Algorithm:

 Initialise: the substitution to be empty, and

 the stack to contain the equation

T1 = T2 and failure to false

 Until stack is empty and no failures occur, do

 unstack X = Y from the stack

 case:

 X is a variable with no occurrence in Y

occurrence in Y:

 substitute Y for X in the stack and

in and add X = Y to

 Y is a variable with no occurrence in X

occurrence in X:

 substitute X for Y in the stack and

in and add Y = X to

 X and Y are constants or variables identical:

continue

 X is f(X1,...,Xn) and Y is f(Y1,...,Yn)

 case:

 f is # and n equals 1

 case:

X1 is a variable that has

no occurrence in Y1:

 substitute Y1 for

X1 in the stack and add

X1 = Y1 to

Y1 is a variable that has

no occurrence in X1:

 substitute X1 for

Y1 in the stack and add

Y1 = X1 to

X1 and Y1 are atomic

constants or identical

variables: continue

X1 and Y1 are atomic

constants that are not

identical:

Calculate the sets E1

and E2 of the attributes

of each of the objects

X and Y.

if E1 and E2 are equal

and E1 = E2 = {a1, ...,

aj} then

 Let V1 = [v11,

..., v1j] and V2

= [v21, ..., v2j]

the respective

lists of values of

their respective

their attributes.

stack V1 = V2

on the stack

 else failure := true

 else failure := true

 else

for a functor f different

from # and n ≥ 1: stack

Xi = Yi, i=1,...,n on the

stack

 else failure := true

 End Until

 if failure, then output failure

 then output

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

17

The algorithm stops :

 - in case of failure: L1 and L2 are not equal, or there

is an attribute ai such that v1i and v2i (the values

corresponding to the two objects) are not unifiable.

 - on success: L1 and L2 are equal, and all attribute

values are unifiable.

In OO-Prolog as in the object approach [Ngomo 1994a]

[Ngomo 1994b] [Ngomo 1995a] [Ngomo 1995b] [Ngomo

1996] [Malenfant 90] [Meseguer 91] [Meseguer 92]

[Meseguer 93] [McCabe 92], an object has a unique

identifier, which makes it possible to distinguish objects.

Two distinct objects cannot have the same identifier. In this

case, applying the Prolog unification procedure to two OO-

Prolog objects will always fail since two distinct identifiers

can never be unified. Therefore, we need to modify the

classic Prolog unification procedure to take into account the

objects and the inheritance relationship.

For the object layer to react homogeneously with the rest

of the Prolog language, it must have mechanisms identical to

those of all data types present in Prolog. We propose to

define a specific mechanism to take objects into account. In

the case of objects, the use of this primitive poses the

problem of names referencing objects. Two structurally

unifiable objects can have different identifiers. There is no

valid justification for accepting a success for the unification

of different object names while the unification of distinct

functor terms fails even if all other elements composing the

terms are identical [Cervoni 94]. As a consequence, we are

obliged to have specific operators for object names. In OO-

Prolog, the name of an object is preceded by the operator #:#

<name>.

For example, "#' Point'" instead of 'Point'. This

notation is used to distinguish object names from other

Prolog terms.

C. Example

Declaration of the Car class:

 #’ Car’ with

 [class(#’Object’) := #’Class’,

 inherits(#’Class’) := [#’Object’],

 attributes(#’Class’) := [

 name(#’Car’),

 brand(#’Car’),

 year(#’Car’) <=

year:number(Year),

 chassis(#’Car’) <=

Chassis:#’Chassis’]

].

Declaration of the Chassis class:

 #’ Chassis’ with

 [class(#’Object’) := #’Class’,

 inherits(#’Class’) := [#’Object’],

 attributes(#’Class’) :=

[type(#’Chassis’),weight(#’Chassi

s’) <= P:number(P)]

].

Example of structural comparison of objects

> #’Chassis’ <- new(C1,[type(_) := 'XF330',poids(_)

:= 200]),

#’Chassis’ <- new(C2,[type(_) := 'XF330', weight(_)

:= 200]),

C1 <- unify(C2),

(C1,C2) <- display.

TERMINAL :: #[#'Chassis',1]

type(#'Chassis') <- 'XF330'

weight(#'Chassis') <- 200

class(#'Object') <- #'Chassis'

TERMINAL :: #[#'Chassis',2]

type(#'Chassis') <- 'XF330'

weight(#'Chassis') <- 200

class(#'Object') <- #'Chassis'

{C1 = #[#'Chassis',1],C2 = #[#'Chassis',2]}

true

Example of data sharing

> #’Chassis’ <- new(C1,[type(_) := 'XF330',poids(_)

:= P]),

#’Chassis’ <- new(C2,[type(_) := T, weight(_) :=

200]),

C1 <- unify(C2),(C1,C2) <- display.

TERMINAL :: #[#'Chassis',1]

type(#'Chassis') <- 'XF330'

weight(#'Chassis') <- 200

class(#'Object') <- #'Chassis'

TERMINAL :: #[#'Chassis',2]

type(#Chassis) <- 'XF330'

weight(#Chassis) <- 200

class(#'Object') <- #'Chassis'

{C1 = #[#'Chassis',1],P = 200,

C2 = #[#'Chassis',2], T = 'XF330'}

III. RECURSIVE UNIFICATION

The algorithm described above does not take into

account composite objects. Indeed, suppose the values to be

unified are names of distinct but semantically unifiable

objects. In that case, the unification procedure will fail since

the two objects have non-unifiable identifiers in the sense of

Prolog. To take into account composite objects, the above

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

18

definition will be improved as follows: two instances i1 and

i2, are semantically unifiable if and only if the values of their

respective attributes are unifiable in the Prolog sense or

semantically unifiable.

A. Principle

In the case of composite objects, the procedure is a little

more complex. Indeed, if the values of the attributes are

objects, one cannot proceed as in the case of simple objects,

i.e., unify their identifiers. Since two non-equal objects

cannot have the same identifier, the unification procedure

would fail. Recall that we want to unify objects structurally,

not syntactically. Of course, syntactic unification

automatically leads to semantic unification. To unify

composite objects semantically, they must be flattened, i.e.,

when the values of the attributes are objects, the semantic

unification procedure must be applied by recursion to these

two objects while managing any cycles. In this case, the

objects

id1 -> [class: car, name: 'R4', make: 'Renault', year:

1978, chassis: id3]

id2 -> [class: car, name: 'R4', make: 'Renault', year:

1978, chassis: id4]

will be semantically unifiable, the other values being

unifiable if id3 and id4 are also unifiable. We must then

enrich the above algorithm by including the case of object

values.

B. Algorithm

The algorithm we describe here is limited to the case

where the two objects to be unified belong to the same class.

We will see in the following how to extend this algorithm to

other situations. Currently, the algorithm is limited to the

case where the two objects to be unified belong to the same

class. For two objects with different classes, the

classification mechanism can assign them to the same class.

In the algorithm below, we assume that the two objects

belong to the same class.

Input : wo terms T1 and T2 to be unified

Output : , mgu of T1 and T2, or failure

Algorithm:

 Initialise:

 the substitution to be empty,

 the stack to contain the equation T1 = T2,

and failure is false

 Until the stack is empty and there is no failure do

 remove X = Y from the stack

 case:

 X is a variable that has no

occurrence in Y:

 substitute Y for X in the

 stack and in and add X =

Y to

 Y is a variable that has no

occurrence in X:

 substitute X for Y in the

 stack and in and add Y =

X to

X and Y are identical constants or

variables: continue

 X is f(X1,...,Xn) and Y is

f(Y1,...,Yn)

 case:

 f is # andn is 1

 case:

 X1 is a

variable with no

occurrence in Y1:

 substitute Y1

for X1

in the stack

and in add

X1 =

Y1 to

 Y1 is a

variable with no

occurrence in X1:

 substitute X1

for Y1

in the stack

and in add

Y1 =

X1 to

X1 and Y1 are atomic

constants or identical

variables: continue

X1 and Y1 are atomic

constants that are not

identical:

Calculate the

sets E1 and E2

of the attributes

of objects X and

Y.

 If L1 and L2 are

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

19

 equal (L1 = L2

=

{a1, ...,aj})

 Let V1 =

[V11, ...,

V1j] and V2 =

[V21, ..., V2j]

 stack V1i =

V2i, i=1,...,n on

the stack

 elsefailure :=

true else failure := true

 else for a functor f different from # and n ≥

1:

 add Xi = Yi, i=1,...,n on the stack

 else failure := true

 End Until

 If failure, thenoutputfailure

 elseoutput

Let us emphasize here the role of the object identifier. It

offers flexibility in manipulating objects, and an object

identifier also allows information to be shared without

duplication. Indeed, since an object can reference another

object directly by its identifier, the direct consequence is that

the referencing object shares all the information contained in

the referenced object, and any modification of the referenced

object is directly visible if accessed from the referencing

object. Similar to what can happen with Prolog terms,

unification is defeated on a rollback. An implementation of

this algorithm in Prolog is provided in [Ngomo 1996].

C. Example

Example of a structural comparison:

> #'Car' <- new(V1,[

 name(#'Car') := 'R4',

 brand(#'Car') := 'Renault',

 year(#'Car') := 1978,

 chassis(#'Car') := C1]),

#'Car' <- new(V2,[

 name(#'Car') := 'R4',

 brand(#'Car') := 'Renault',

 year(#'Car') := 1978,

 chassis(#'Car') := C2]),

#'Chassis' <- new(C1,[type(#'Chassis') :=

 'XF330',weight(#'Chassis') := 200]),

#'Chassis' <- new(C2,[type(#'Chassis') :=

 'XF330',weight(#'Chassis') := 200]),

V1 <- unify(V2), (V1,V2) <- display.

TERMINAL :: #[#'Car',1]

name(#'Car') <- 'R4

brand(#'Car') <- 'Renault'

year(#'Car') <- 1978

chassis(#'Car') <- #[#'Chassis',3]

class(#'Object') <- #'Car'

TERMINAL :: #[#'Car',2]

name(#'Car') <- 'R4

brand(#'Car') <- 'Renault'

year(#'Car') <- 1978

chassis(#'Car') <- #[#'Chassis',4]

class(#'Object') <- #'Car'

{V1 = #[#'Car',1],C1 = #[#'Chassis',3],V2 =

#[#'Car',2],C2 = #[#'Chassis',4]}

Example of data sharing between objects:

> #'Chassis' <- new(C1,[type(#'Chassis') :=

 'XF330',weight(#'Chassis') := P]),

#'Chassis' <- new(C2,[type(#'Chassis') :=

 T,weight(#'Chassis') := 200]),C1 <- unify(C2),

all(X,member(X,[C1,C2])) <- display.

 TERMINAL :: #[#'Chassis',1]

 type(#'Chassis') <- 'XF330'

 weight(#'Chassis') <- 200

 class(#'Object') <- #'Chassis'

 TERMINAL :: #[#'Chassis',2]

 type(#'Chassis') <- 'XF330'

 weight(#'Chassis') <- 200

 class(#'Object') <- #'Chassis'

 {C1 = #[#'Chassis',1],C2 = #[#'Chassis',2]}

> #'Car' <- new(V1,[

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

20

name(#'Car') := 'R4',

brand(#'Car') := 'Renault',

year(#'Car') := 1978,

chassis(#'Car') := C1]),

#'Car' := 'Renault <- new(V2,[

 name(#'Car') := 'R4',

 brand(#'Car') := 'Renault',

 year(#'Car') := 1978,

 chassis(#'Car') := C2]),

#'Chassis' <- new(C1,[type(#'Chassis') :=

 'XF330',weight(#'Chassis') := P]),

#'Chassis' <- new(C2,[type(#'Chassis') :=

 T,weight(#'Chassis') := 200]),

V1 <- unify(V2), (V1,V2) <- display.

TERMINAL :: #[#'Car',1]

name(#'Car') <- R4

brand(#'Car') <- Renault

year(#'Car') <- 1978

chassis(#'Car') <- #[#'Chassis',3]

class(#'Object') <- #'Car'

TERMINAL :: #[#'Car',2]

name(#'Car') <- R4

make(#'Car') <- 'Renault'

year(#'Car') <- 1978

chassis(#'Car') <- #[#'Chassis',4]

class(#'Object') <- #'Car'

{V1 = #[#'Car',1],C1 = #[#'Chassis',3],V2 = #[#'Car',2],C2

= #[#'Chassis',4],P=200,T='XF330'}

IV. SOME EXTENSIONS OF THE STRUCTURAL

UNIFICATION ALGORITHM FOR LOGIC OBJECTS

The unification of two terms of the same class consists

mainly in recursively unifying the fields of the structures of

the instances. In the case of objects, two instances of the

same class are semantically unifiable if and only if the values

of their respective attributes are unifiable in the Prolog sense

or semantically unifiable. This definition does not allow us,

for example, to unify a rectangle of length 4 and width 4 with

a square of side 4 unless we use the classification

mechanism. Again, the user must explicitly express the

classification constraints. If the instances are not of the same

class, we must look for a possible inheritance relationship

between them that would allow us to unify them by

specialization or generalization. We propose below some

extensions of the above algorithm. These extensions are not

yet implemented in OO-Prolog but are verified.

V. CONCLUSION

In this paper, we have presented an algorithm for

extending the syntactic unification of Prolog to the structural

unification of logic objects. The algorithm currently

implemented in OO-Prolog is limited to the case where the

two objects to be unified belong to the same class. The

extensions proposed in this study remain to be implemented.

ACKNOWLEDGMENT

The author wishes to thank Habib Abdulrab, Jean-Pierre

Pécuchet, AbdenbiDrissi-Talbi, Mohamed Rezrazi, Fabrice

Sebbe, and all his friends and colleagues for their help and

support. He also wishes to thank Olga, Michel, Marielle, and

Guyriel, who has always been very precious support for the

realization of this work.

REFERENCES
[1] [Ait Kaci 91] Ait Kaci H., Warren’s abstract machine: a tutorial

reconstruction, MIT Press, 1991.
[2] [Battani 73] G. Battani and H. Meloni, Interpreteur du langage de

programmation Prolog, Groupe d'Intelligence Artificielle, Université

d'Aix-Marseille, (1973).
[3] [Boizumault 88] Boizumault, P. Prolog l'implantation, Masson

(1988), 303.

[4] [Bratko01] Ivan Bratko: Prolog Programming for the Artificial
Intelligence. 3rd Ed., Addison-Wesley, Harlow (UK), (2001).

[5] [Cervoni 94] L. Cervoni “Méthodologies et Techniques de résolution

de Problèmes avec Contraintes. Application en Programmation
Logique avec Objets : CooXi.Thèse de Doctorat Nouveau Régime,

Université de Rouen, juillet (1994).

[6] [Clocksin-03] William F. Clocksin, Christopher S. Mellish :
Programming in Prolog. 5th Ed., Springer-Verlag, Berlin, (2003).

[7] [Cohen 88] Cohen J., A View of the Origins and Development of

Prolog, Communications of the ACM, 31(1) (1988) 26-36.
[8] [Colmerauer 71] Colmerauer Alain, Fernand Didier, Robert Pasero,

Philippe Roussel, Jean Trudel, Répondre à, publication interne,

Groupe Intelligence Artificielle, Faculté des Sciences de Luminy,
Université Aix-Marseille II, France, mai 1971. Cette publication

consiste en un listing avec des commentaires à la main.

[9] [Colmerauer 72] Colmerauer Alain, Henry Kanoui, Robert Pasero et
Philippe Roussel, Un système de communication en français, rapport

préliminaire de fin de contrat IRIA, Groupe Intelligence Artificielle,

Faculté des Sciences de Luminy, Université Aix-Marseille II, France,
octobre (1972).

[10] [Colmerauer 73] A. Colmerauer, P. Roussel and R. Pasero, Un

système de communication Homme-Machine en Français, Groupe

d'Intelligence Artificielle, Univ. d'Aix-Marseille, (1973).

[11] [Colmerauer75] Colmerauer Alain, Les grammaires de

métamorphose GIA, publication interne, Groupe Intelligence
Artificielle, Faculté des Sciences de Luminy, Université Aix-

Marseille II, France, novembre 1975. Version anglaise,

Metamorphosisgrammars, Natural Language Communication with
Computers, Lectures Notes in Computer Science 63, édité par L.

Bolc, Springer Verlag, Berlin Heidelberg, New York, pages 133 à

189, 1978, ISBN 3-540-08911-X.
[12] [Colmerauer 82] A. Colmerauer Prolog II : Manuel de Référence et

Modèle Théorique, Groupe d'Intelligence Artificielle, Université

d'Aix-Marseille, France, (1982).

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

21

[13] [Colmerauer 89] A. Colmerauer. Une introduction à Prolog III.

Journée de Synthèse AFECT, Etat de 1' Art et Perspectives en

Programmation Language, INRIA, (1989) 129-155.

[14] [Colmerauer 92] Alain Colmerauer et Philippe Roussel: La naissance
de Prolog, juillet (1992).

[15] [Colmerauer 93] A. Colmerauer, The Birth of Prolog. In The Second

ACM-SIGPLAN History of Programming Languages Conference
pages 37-52. ACM SIGPLAN Notices, March (1993).

[16] [Davis 60] Martin Davis and Hilary Putnam, A Computing Procedure

for Quantification Theory, Journal of the ACM, 7(3) (1960) 201–215
(DOI 10.1145/321033.321034).

[17] [Debarbieri89] Christian Debarbieri. Mise au point en Prolog, Une

vérification de la résolution. Congrès AFCET-RFIA'89, Paris 1989.
[18] [Debarbieri90] Christian Debarbieri: Étude et Réalisation d'un

Système d'Aide à la Mise au Point en Programmation Logique. Thèse

de doctorat de l’Université de Saint-Étienne et de l’École nationale
supérieure des mines de Saint-Étienne, France, (1990).

[19] [Delahaye 86] J.P. Delahaye. Outils logiques pour l'intelligence

artificielle. Editions Eyrolles. (1986).

[20] [Delahaye 88] J.-P. Delahaye, Outils logiques pour l'intelligence

artificielle, Eyrolles, (1988).

[21] [Delobel 91] Claude Delobel, Michael Kifer, et al..Deductive and
Object-oriented Databases: Proceedings of The Second International

Conference, Dood'91, Munich, Germany, December 16-18, (1991).

[22] [Deransart 85] P. Deransart, G.Richard, C. Moss. Spécifications
formelles de Prolog Standard. Programmation Logique, actes du

séminaire (1985), CNET.
[23] [Deransart 86] P. Deransart, "Quelques idées pour une spéfication de

la sémantique de Prolog". Rapport de Recherche INRIA n° xx,

Février (1986).
[24] [Deransart 87] Pierre Deransart& Gérard Ferrand, An

OperationalFormalDefinition of Prolog, Rapport de Recherche

INRIA-Roquencourtn° 763, Décembre (1987).
[25] [Deransart89a] Pierre Deransart& Gérard Ferrand. A methodological

view of logic programming with negation. Rapport de Recherche No

1011, INRIA-Roquencourt, Avril1989.
[26] [Deransart 89b] Pierre Deransart& Gérard Ferrand. Proofs Methods

and Declarative Diagnosis in Logic Programming. ICLP'89, June 19-

23 Lisbonne.
[27] [Deransart 91] P. Deransart, Ferrand G., A Formal Operational

Definition of Prolog: A Specification Method and Its Application,

Rapport de recherche INRIA, revised manuscript, (1991).
[28] [Deransart 92] P. Deransart, G. Ferrand, A Formal Operational

Definition of Prolog: A Specification Method and its Application,

New Generation Computing, 10 (1992) 121-171.
[29] [Deransart 96] Deransart, Pierre, Ed-Dbali, AbdelAli, Cervoni,

Laurent, Prolog: The Standard: Reference Manual, Springer Verlag,

Avril (1996), ISBN: 3-540-59304-7.
[30] [Ferrand 92] G. Ferrand, P. Deransart, Prolog method of partial

correctness and weak completeness for normal logic programs, MIT

Press, JICSLP'92, Washington, Nov. 9-13 1992.
[31] [Geyres 89] Stéphane Geyres. Une approche industrielle de la

validation et de la vérification des systèmes à base de connaissances.

Génie Logiciel et Système Expert, n 16. Ed EC2, septembre (1989).
[32] [Gilmore 60a] P. C. Gilmore. A proof method for quantification

theory: Its justification and realization. IBM Journal of research and

development, 4(1960) 28–35.
[33] [Gilmore 60b] P. C. Gilmore. A program for the production from

axioms of proofs for theorems derivable within the first-order

predicate calculus. English, with English, French, German, Russian,
and Spanish summaries. Information processing, Proceedings of the

International Conference on Information Processing, Unesco, Paris

15–20 June 1959, Unesco, Paris, R. Oldenbourg, Munich,
Butterworths, London, (1960) 265–273.

[34] [Green 69] C. Green. Theorem-proving by resolution as a basis for

questions-answering systems. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 183-205, Edinburgh University Press,

Edinburgh, (1969).

[35] [Haton 91] Haton, P. Le Raisonnement en Intelligence Artificielle.
InterEditions, (1990).

[36] [Hayes 73] P. J. Computation and Deduction, Proc. MFCS Conf.,

Czechoslovak Academy of Sciences, (1973) 105-118.

[37] [Herbrand31] J. Herbrand. Sur le problème fondamental de la logique

mathématique. Comptes rendues des séances de la société des
sciences et des lettres de varsovie. Cl III, 24 (1931).

[38] [Herbrand 67] J. Herbrand, Investigations in Proof Theory, in From

Frege to Gödel : A Source Book in Mathematical Logic, 1879-1931,
van Heijenoort, J. (ed.), Harvard University Press, Cambridge, Mass.

(1967) 525-581.

[39] [Hewitt. 69] Carl Hewitt. PLANNER: A Language for Proving
Theorems in Robots. IJCAI 1969: 295-302

[40] [Hewitt. 70] Carl Hewitt. PLANNER: A Language for Manipulating

Models and Proving Theorems in a Robot, Massachusetts Institute of
Technology, Project MAC, Artificial Intelligence, Memo No 168,

1970-08-01.

[41] [Hewitt. 72] Carl Hewitt. Description and Theoretical Analysis
(Using Schemata) of Planner, A Language for Proving Theorems and

Manipulating Models in a Robot AI Memo No. 251, MIT Project

MAC, (1972).

[42] [Hewitt. 09] Carl Hewitt. Middle History of Logic Programming:

Resolution, Planner, Prolog and the Japanese Fifth Generation Project

ArXiv 2009.
[43] [Huet 86] G. Huet, Deduction and Computation, Rapport de

Recherche INRIA, N° 513, Avril (1986).

[44] [ISO 93] ISO (1993). Draft Standard for the Programming Language
Prolog, ISO/IEC CD 13211-1: 1993 (E).

[45] [Jaffar 88] J. Jaffar and J.-L. Lassez. From unification to constraints.
In K. Furukawa, H. Tanaka, and T. Fujisaki, editors, Logic

Programming '87: Proc. 6th Conf., Tokyo, Japan, (1987).

Springer-Verlag, Berlin, 1988. (LNCS, 315).
[46] [Kahn 81] K. M. Kahn. UNIFORM: a language-based upon

unification which unifies (much of) LISP, PROLOG, and ACT 1. In

IJCAI'81, (1981) 933-939.
[47] [Kanoui, 1973] Kanoui Henry, Application de la démonstration

automatique aux manipulations algébriques et à l'intégration formelle

sur ordinateur, thèse de 3ème cycle, Groupe Intelligence Artificielle,
Faculté des Sciences de Luminy, Université Aix-Marseille II, France,

octobre (1973).

[48] [Kornfeld 83] Kornfeld W. A., Equality for Prolog, Proc. of
IJCAI'83, (1983) 514-519.

[49] [Kowalski 70] Kowalski, R. A. Kowalski and D. Kuchener,

Resolution with selection function, Artificial Intelligence, 2 (3)
(1970) 227-260.

[50] [Kowalski 71] Kowalski Robert A. et D. Kuehner, Linear resolution

with selection function, memo 78, University of Edinburgh, School
of Artificial Intelligence, 1971. Aussidans Artificial Intelligence 2, 3,

pages 227 à 260.

[51] [Kowalski 74a] Kowalski, R. Predicate Logic as a Programming
Language, Information Processing 74, Stockholm, North-Holland,

1974, 1974, 569-574.

[52] [Kowalski 74b] Kowalski Robert A. and Maarten van Emden, The
semantic of predicate logic as the programming language, memo 78,

University of Edinburgh, School of Artificial Intelligence, 1974.

Aussi dans JACM 22, 1976, pages 733 à 742. (sémantique moderne
par point fixe de la programmation avec clauses de Horn)

[53] [Kowalski 79a] Kowalski, R. Algorithm = Logic + Control, Comm.

ACM 22, 7 (1979), 424-436.
[54] [Kowalski 79b] Kowalski, R. Logic for problem solving. North-

Holland, Amsterdam, (1979).

[55] [Kowalski 88] Kowalski Robert A., The early history of logic
programming, CACM, 31(1) (1988) 38-43.

[56] [Lloyd 88] [Lloyd 87] John W. Lloyd: Foundations of Logic

Programming, 2nd Edition. Springer (1987), ISBN 3-540-18199-7.
[57] [Lloyd 88] John W. Lloyd: Directions for Meta-Programming. FGCS

(1988) 609-617.

[58] [Malenfant 90] Malenfant, J. Conception et Implantation d'un langage
de programmation intégrant trois paradigmes: la programmation

logique, la programmation par objets et la programmation répartie.

Thèse de PhD, Univ. de Montréal, Mars (1990).

Macaire Ngomo / IJCTT, 69(10), 12-22, 2021

22

[59] [McCabe 92] F. G. McCabe. Logic & Objects. International Series in

Computer Science. Prentice-Hall, (1992).

[60] [Meseguer 91] J. Meseguer. Conditional rewriting logic as a unified

model of concurrency. Theoretical Computer Science, 96(1):73 155,
1992. Also Technical Report SRI CSL 91 05, SRI International, Feb.

1991.

[61] [Meseguer 92] J. Meseguer. Multiparadigm logic programming. In
Third Intl. Conf. on Algebraic and Logic Programming, pages 158

200, Volterra, Italy, Sept. (1992).

[62] [Meseguer 93] J. Meseguer and X. Qian. A logicd semantics for
object-oriented databases. In A CM SIGMOD Conference on

Management of Data, (1993) 89 98, New Yok}, ACM.

[63] [Ngomo 94a] Ngomo M. & Pécuchet J-P. Contribution à l’étude de
l’association des paradigmes de programmation logique et

programmation par objets. Poster RJC-IA’94, (1994) 314 Marseille,

France.
[64] [Ngomo 94b] Ngomo M. & Pécuchet J-P. Contribution à l’étude de

l’association des paradigmes de programmation logique et

programmation par objets. Actes du 2ème Colloque Africain sur la

Recherche en Informatique, CARI’94, (1994) 879-893,

Ouagadougou, Burkina Faso.

[65] [Ngomo 95a] Ngomo M. , Pécuchet J-P. & Drissi-Talbi A. Une
approche déclarative et non-déterministe de la programmation

logique par objets mutables. Actes des 4èmes Journées Francophones

de Programmation Logique et Journées d’étude Programmation par
contraintes et applications industrielles, Prototype JFPLC'95, (1995)

391-396.
[66] [Ngomo 95c] Ngomo M., Pécuchet J-P., Drissi-Talbi A. Intégration

des paradigmes de programmation logique et de programmation par

objets : une approche déclarative et non-déterministe. Actes du 2ème
Congrès bienal de l’Association Française des Sciences et

Technologies de l’Information et des Systèmes, AFCET -

Technologie Objet – 95, (1995) 85-94, France.
[67] [Ngomo 96] Ngomo M. Intégration de la programmation logique et

de la programmation par objets : étude, conception et implantation.

Thèse de Doctorat d’Informatique, Université de Rouen - INSA de
Rouen, Décembre (1996).

[68] [O'Keefe-90] Richard A. O'Keefe: The Craft of Prolog. The MIT

Press, Cambridge (MA), (1990).
[69] [Pasero 73] PaseroRobert , Représentation du français en logique du

premier ordre en vue de dialoguer avec un ordinateur, thèse de 3ème

cycle, Groupe Intelligence Artificielle, Faculté des Sciences de
Luminy, Université Aix-Marseille II, France, mai (1973).

[70] [Prawitz 60] Dag Prawitz, An improved proof procedure., First

published: August 26(2) (1960) 102-139.
https://doi.org/10.1111/j.1755-2567.1960.tb00558.

[71] [Robinson 65] Robinson, J.A. A Machine-Oriented Logic Based On

the Resolution Principle. J. ACM 12, 1, (1965) 23-41. (sur le principe
de résolution).

[72] [Robinson 80a] J.A. Robinson, E.E. Sibert, Loglisp an alternative to

Prolog, Research Report 80-7, University of Syracuse, (1980).

[73] [Robinson 80b] J.A. Robinson, E.E. Sibert, Logic Programming in

Lisp, Research Report 80-8, University of Syracuse, (1980).

[74] [Roussel 72] Roussel Philippe, Définition et traitement de l'égalité

formelle en démonstration automatique, thèse de 3ième cycle,
Groupe Intelligence Artificielle, Faculté des SciencesdeLuminy,

Université Aix-Marseille II, France, mai (1972).

[75] [Roussel 75] Prolog, manuel de référence et d'utilisation, Groupe
Intelligence Artificielle, Faculté des Sciences de Luminy, Université

Aix-Marseille II, France, septembre (1975).

[76] [Savory 06] Jacques Savoy : Introduction à la programmation logique
(Prolog), (2006).

[77] [Sethi 96] Ravi Sethi : Programming Languages : Concepts &

Constructs. Addison-Wesley, Reading (MA), 1996. (G6-1554).
[78] [Shapiro 86] L. Sterling andE. Shapiro. The Art of Prolog. Advanced

programming techniques. The MIT Press, Cambridge, Massachusetts,

(1986).
[79] [Sterling 84] L. Sterling. Expert System= Knowledge + Meta-

Interpreters. Technical Report No CS84-17. Weizmann institute of

Science, 7 6100 Rehovot, Israel.

[80] [Sterling 86a] Leon Sterling. Incremental Flavor-mixing of Meta-

interpreters for Expert system construction. Proceedings of

Symposium on logic programming, Salk lake city, Utah, 20-27, 1986.
[81] [Sterling 86b] Leon Sterling, Ehud Shapiro: The Art of Prolog:

Advanced Programming Techniques. The MIT Press, Cambridge

(MA), (1986). (G6-139).
[82] [Sterling 87] L. Sterling & A. Lakhotia. Composing Prolog Meta-

interpreters. Case Western Reserve University, Cleveland Ohio
44106 USA. (1987).

[83] [Sterling 90] Sterling, L. et Shapiro, E. L'Art de Prolog. MASSON

(1990).
[84] [Thaye 88] Thaye, A. &co. Approches Logiques de l'Intelligence

Artificielle: de la logique classique à la programmation logique.

Dunod Informatique, (1988).
[85] [Thaye 89] Thaye, A. &co. Approches Logiques de l'Intelligence

Artificielle: de la logique modale à la logique des bases de données.

DunodInformatique, (1989).
[86] [Ueda 85] Ueda, K. Guarded Horn Clauses, Actes Logic

Programming'85 LNCS 221 (1985) 168 179.

[87] [Ueda 86] K. Ueda, Guarded Horn Clauses, Ph.D. Thesis, University
of Tokyo, (1986).

[88] [Warren 77a] D.R. Warren. Implementing Prolog: compiling

predicates logic programs. D.A.I research port n 39/40, university of
Edinbough, (1977).

[89] [Warren 77b] Warren David H. D., Luis M. Pereira et Fernando

Pereira, Prolog the language and its implementation, Proceedings of
the ACM, Symposium on Artificial Intelligence and Programming

Languages, Rochester, N.Y., aout (1977).

[90] [Warren 83] D.R. Warren. An abstract Prolog instruction set.
Technical note 309, SRI international, Menlo Park, (Octobre 1983),

30.

